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Non-linear isotopic diffusion in dense fluids 

R E Nettleton 
Department of Physics, University of the Witwatersrand, Johannesburg, South Africa 

Received 25 August 1987 

Abstract. A binary uncharged isotopic mixture at liquid density is described by the state 
variables M ,  and M,, the component masses, volume V and temperature T. To these, in 
an extended irreversible thermodynamic treatment, is added the diffusion flow Jd. In the 
framework ofthis approach, a kinetic equation relates j,, to the driving force, - V T ( p ,  - p2) ,  
where the p2 are chemical potentials and T is kept constant in computing the gradient. 
To calculate the coefficient y of this force, a microscopic model is adduced which expresses 
y in terms of PTT, the pressure tensor. Evaluation of y and application of reciprocity 
permits the calculation of @, the thermodynamic force associated with Jd. Once @ is 
known, integrability conditions for the Helmholtz function yield the O ( J i )  terms in the 
pressure P and the p 8 .  From these results and an estimate from computer simulations of 
the relaxation time for Jd, we obtain D, in the diffusion coefficient, D =  D , + D , J i .  
Estimates for a hard-sphere model representing a mixture of 36Ar and 40Ar predict that all 
the J :  terms in D, P, p ,  are negligible unless iJd/ 3 IO4 kg m-' s-' at liquid density. 

1. Introduction 

Early formulations (De Groot and Mazur 1962) of the non-equilibrium thermodynamics 
of diffusion in binary fluid mixtures, for states close to local equilibrium, chose the 
volume V, temperature T and the masses M1 and M 2  of the two constituents as state 
variables. Such treatments for a non-uniform fluid set the flux J, = pl( uI - U )  of one 
of the components, whose mass density is p1 and flow velocity u1 in a mixture of mass 
velocity U, proportional to the thermodynamic force - V , ( p l  - p2) ,  where p, is the 
Gibbs function per unit mass of i, and the gradient is calculated at constant T. With 
a view to obtaining new reciprocity relations useful in the calculation of liquid transport 
coefficients, the set of state variables was extended (Nettleton 1963) to include Jd E J, 
with conjugate flux JJd/Jt and linearised force Q, which are associated with this new 
independent variable. In the present paper, we seek to extend this formalism still 
further by allowing Q, and the phenomenological coefficients of the extended thermo- 
dynamic formalism to depend non-linearly on Jd. This permits us to investigate the 
dependence of transport coefficients on the square of the concentration gradient in 
steady states far from equilibrium. 

A microscopic justification for this extension into the non-linear regime has been 
worked out (Nettleton 1985), based on application of the Zwanzig projection operator 
technique (Zwanzig 1960, 1961) to the classical Liouville equation. Under circum- 
stances where 7 (iLA), A being a dynamical function even in particle momenta and 
L the self-adjoint Liouville operator, one can define the conjugate flux + and force 
-dF/JT, where F is the Helmholtz function, which are non-linear in 7. The Onsager- 
Casimir reciprocity relations are preserved among the coefficients in the kinetic equation 
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for f .  This result is relevant to the case of diffusion, since here we have 

as the A and 77 variable, respectively, provided U = 0, as is the case throughout the 
present paper. Here pt is the momentum of particle i, and the sum is over the particles 
of constituent 1. Jd is thus an 77-type variable, and there should exist an extended 
thermodynamic formalism with flux Jd and force @ coupled by coefficients non-linear 
in Jd and exhibiting Onsager symmetry. 

If the phenomenological coefficients depend on J d ,  this should also be true of the 
steady-state diffusion coefficient. In § 3 we show that, in a steady state, 

Jd=-DVCl ( 2 )  
where cl is the mole fraction of consistuent 1. D should depend on the state variable 
Jd ,  by symmetry, according to 

D = Do+ D2J2 + O(J:). (3) 

We want, using the reciprocity and integrability conditions derived in § 2 ,  to find a 
way to estimate D2/D0  in order to predict whether non-linear effects will be appreciable 
in situations realisable in experiment or computer simulation. Computers provide a 
way of studying steady states far from equilibrium, and interest in the non-linear 
contributions to transport coefficients has been stimulated by non-Newtonian effects 
in the viscosity of fluids subjected in computer studies (Holian and Evans 1983, Hanley 
and Evans 1982) to Couette flow at a high shear rate. The shear viscosity is found 
(Hanley and Evans 1982) to depend on the square root of the shear rate when the 
latter is large, and this raises the question whether similar non-analyticities can arise 
in other transport coefficients. The estimates in § 4 answer this question in the negative 
for the hard-sphere model. 

We shall proceed in 9 2 to develop the general extended thermodynamic formalism 
which adds Jd to the set of state variables and associates with it a thermodynamic 
force @. This implies a Gibbs equation from which we infer the integrability conditions 
used in calculating the Jd dependence of the pressure and chemical potentials. By 
applying a Casimir anti-reciprocity relation to the kinetic equations, we obtain results 
useful in calculating D, and the higher-order Jd dependence of @. To make numerical 
estimates, we need a microscopic molecular model for the driving terms in the kinetic 
equation for J d .  This is discussed in 0 3 where, for high densities and short times, it 
is argued that the force between a small fluid subvolume and its surroundings can be 
expressed in terms of the pressure. This picture is more appropriate to a mixture of 
isotopes than of different elements or compounds, and it is for this reason that the 
present discussion is limited to isotopic diffusion. The model makes possible numerical 
estimates, made in 0 4, for an isotopic dense hard-sphere mixture. These estimates 
show that non-linear effects are negligible for realisable diffusion flows. 

2. Gibbs equation, integrability and reciprocity conditions 

The system to be considered is a macroscopically small subvolume V = 1 3 ,  of the order 
of a cubic micron, immersed in an infinite non-uniform dense fluid phase. There are 
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two isotopes, of masses M, = m,N, ( i  = 1,2), where m, is the atomic mass and N ,  the 
number of atoms of component i in V. As an additional state variable, we specify the 
thermodynamic temperature T. In the spirit of extended non-equilibrium thermo- 
dynamics (Casas-Vhzquez et a1 1984), we add Jd to the set of state variables, so that 
the entropy S = S (  M1, M 2 ,  V, T, J d ) .  This implies the Gibbs equation and correspond- 
ing equation for the Helmholtz function, F: 

(4a)  

(4b) 

T d S  = d U + P d V - p 1 d MI - p2 d M2 + Q, d Jd 

d F  = - P  d V -  S d T + 1 1 1  dM1+ p2 dM2- Q, * dJd. 

The variables in (4a, b)  were chosen to conform to earlier treatments (De Groot and 
Mazur 1962), and they are used in the present problem because they lead to a simple 
form for the force conjugate to J d .  However, one could equally well use the particle 
numbers N ,  and the partial Gibbs functions per particle instead of M, and p,,  
respectively. The volume V is used instead of P because the system has a fixed volume, 
and we want to extend the equilibrium equation of state, given for hard spheres in the 
form Po(n, T ) ,  by calculating an additive O ( J ; )  contribution. Equation (4b), with the 
present choice of variables, and its associated integrability conditions, provide a way 
of effecting this extension. 

The integrability conditions for F are, from equation (4b), 

dP/dJd = d@/d v ( 5 a )  

dp,/dJd = -d@/d M ,  ( 5 b )  

ds /dJd= d@/dT.  ( 5 c )  

Equation (5a)  can be used to calculate the thermodynamic pressure, P, provided we 
can calculate Q, from the reciprocity relations to be developed below. Similarly, 
equation ( 5 b )  can be used to calculate the Jd dependence of the chemical potentials, 
and this result is used in the calculation of DJD,.  

T ds/dJd = d UlaJ,  -+ a. 
A further implication of equation (4a) is 

(6) 
If we expand 

Equations (5c),  (6) and (7a, 6) jointly imply that 

2 U 2 = v 2 - T d v 2 / a T  (8) 
so that we can calculate U, if we can find u2 with the aid of the reciprocity relations. 
Furthermore, 

U =  u,,(N, v, e) (9) 

C,( T - e )  = - U2Ji + O( J : ) .  (10) 
We can use this result if we wish to predict the outcome of a computer experiment 
which uses 0 rather than T as the temperature variable. Equation (10) will also be 
used in 0 4 to predict the magnitude of T - t9 for the hard-sphere model. 

where 0 is the local equilibrium temperature defined by this equation. Then 
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Using ( 4 a )  to compute dS/dt, we find 

V-' dS/d t  = -V * J, + (+ ( I l a )  

J s =  T-'(Jq -/*.1J,-p2J2) (1 lb )  

-J' * ( T-lV T ) + J d  v ~ ( p 2  - p1)+ v-'@ - j d  (1 l c )  

J' 3 Jq - h ,  J l -  h2J2. ( 1 l d )  

Here Jq is the total heat flux, h, the partial enthalpies and V T  the gradient calculated 
holding T constant and allowing M I  and M2 to vary. 

Selecting the conjugate fluxes and forces from ( 1  1 c), we construct the rate equation 
for Jd in the form, 

j d  = ( L /  v)* - y v  T (  p 1 - p2) - A T-'V T. (12) 

L, y and A are phenomenological coefficients which depend on J d .  When equation 
(12) is substituted into equation ( 1  1 c), the condition that (+ be positive definite requires 
that 

(13) 

i.e. an anti-reciprocal coupling between the phenomenological coefficients in (12) and 

Jd = - y V-ICP 

(13 ) .  
If we substitute (7b) into the right-hand member of (13) and expand 

Y =  yo+ y z J i + o ( J : )  (14) 

v2yov - '  = 1 (15a) 

v2Y2= v4Y0. (15b) 

the condition that the resulting equation be identically satisfied is 

We shall invoke a model in § 3 to find yo and y z ,  and then we can use equations 
(15a, b) to calculate v2 and v4. Reciprocity has thus given us CP provided we can 
determine y. 

If A # 0 in (12), a second application of anti-reciprocity requires that 

J' = -A V-'CP. (16) 

This should be at least approximately valid near a steady state, since coupling of Jd 
and J'  will cause one flux to excite the other. We should note, however, that the choice 
of state variables implies an ensemble in which only Jd is measured. If we wish to 
examine the coupling of Jd and J ' ,  we should construct a formalism in which both 
are treated as relaxing state variables on the same footing as has been done in an 
earlier linear theory (Nettleton 1963). Predictions concerning J'  would then no longer 
be confined to the neighbourhood of a steady state. Equation (16) is therefore not 
advanced here as yielding a reliable prediction of the steady-state non-diffusive heat 
flow. 

The evaluation of A will be undertaken in § 3, where we shall calculate it in such 
a way that the driving terms in (12) are proportional to V c , ,  as predicted by a 
microscopic model to be developed in the same section. We shall also evaluate yo and 
y2 by comparing the term proportional to V c ,  in (12) with the result obtained from 
the microscopic model. 
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3. Model calculation of driving terms 

We proceed here to discuss the evaluation of y ,  introduced in (12) and (14), and other 
quantities such as v 2 ,  v4, U, and D2 calculable from yo and y 2 .  First we observe that, 
i f f  is the solution of the classical Liouville equation, 

J d =  fA,dr kD=iLAD (17) I 
where the integral is over phase space. The driving terms in equation (12) arise from 
the coupling of the fluid within V to the surroundings. This coupling adds a term 

4 = -E 4 .  af/ap, (18) 
1 

to the Liouville equation, where the sum is over particles of the system, and FJ is the 
contribution to the force on particle j from interactions across the boundary separating 
the fluid from its surroundings. The reason for restricting the problem to an isotopic 
mixture now becomes apparent, since 4 under this restriction will depend on the 
position of j but not on which constituent it is to which the particle belongs-a very 
useful simplification. To calculate a kinetic equation such as (12), we multiply the 
Liouville equation by AD and integrate over r space. The result of applying this 
operation to the expression in (18) is to be compared with the driving terms in (12). 

On multiplying (18) by AD and integrating, we get 

I c$ADdr= v - ' I  4f d r .  (19) 
/ € [ I !  

This is a sum of contributions from the forces acting across the boundary on particles 
of component 1 whose x coordinates are close to i f l .  We shall suppose that, at liquid 
densities, the fluid is approximately contained by the surrounding medium during the 
very short time (estimated for hard spheres in $4 )  that Jd requires to relax to its 
steady-state value. The forces across the boundary can then be expressed in terms of 
the pressure P,, at the boundary, so that (Nettleton 1984) 

v 4ADdT= -6n18 ( P x , / n s )  da =-P,,12(c:-c;). (20) I 6 - r  I 
Equation (20) supposes that the force on particles of species 1 in a small volume 
element is c1 times the total force across the boundary on all particles in that element, 
since the force per particle is the same on particles of both species. The integral is 
over the bounding surfaces at x = *$l. We have defined n = n ,  + n 2 ,  the sum of the 
number densities, and c, = n , / n  ( i  = 1,2). P,, is constant across the system and thus 
the same on both boundaries, from the condition of mechanical stability in the steady 
state, aP,,/dx = 0. Putting c:  - c ;  = 1 ac,/ax and V = 13, we get 

As J d  -* 0,  P,, + Po, the equilibrium equation of state. Particles moving with velocity 
J d / m , n l  relative to U carry momentum J d / n l .  Given that J2=-J, = -Jd, inclusion 
of the total contribution to the momentum flux from both J, and J2 gives 

(22) PX.Y = PO + Jdx Jdx ( p ' + p i  I ) 
where p i  = mini. 
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To evaluate y in equation ( 1 2 ) ,  we must compare the coefficient of V c ,  in the latter 
equation with the result of combining (21 )  and (22 ) .  This requires evaluation of 
p,  - p 2 .  The equilibrium functions pi0 can be found if we note that for isotopes whose 
total numbers are N I  and N , ,  with N = N I  + N, ,  the Helmholtz function is 

where FN is the free energy of N identical particles of mass m satisfying 
m 3 N / 2  = m 3 N , / 2 m 3 N , / Z  

1 2 .  

Equation (23 )  implies that 

Po=-dFN/dV=Po(n ,  T )  (24 )  

p,o= m;'aFN/aN - KTm;' In( N /  Ni) ( i = l , 2 ) .  (25 )  

where Po is the equilibrium equation of state of a single-component fluid, and 

The evaluation of the J,-dependent terms in V T ( p l  - p,) entails calculating ap,,/ank 
( i ,  k = 1,2) .  We can evaluate the n, derivatives of the combination ( m , p l o -  m2p20)  
from equation ( 2 5 ) .  In addition, from the Gibbs-Duhem equation, we obtain 

n ,mlap lo /dn ,  + n2m,apzolan, = aPo/an, ( i = l , 2 ) .  (26 )  
These additional relations yield all the n, derivatives of pko and finally lead to 

The derivatives V n ,  and V n ,  in equation (27 )  are related by the mechanical equilibrium 
condition, aPxx/ax = 0, which assumes the form 

( a P o / a n ) ( V n , + V n 2 ) + ( a P o / a T ) V T - J ~ [ ( p , n , ) ~ ' C n , + ( p , n , ) ~ ' V n , ] + O ( J ~ )  = 0. 
(28 )  

This equation can be solved to derive a lengthy expression for V n ,  in terms of V n , ,  
V T  and J i ,  and permits us to express V T ( p l o - p 2 0 )  in terms of V c ,  and VT. Putting 
this result into (12 )  and comparing the term in V c ,  with (21 ) ,  we get 

(29 )  
To evaluate y 2 ,  we must compare the O ( J i )  terms in y V T ( p l - p 2 )  with the 

corresponding terms in Pxx. By using the integrability condition ( 5 6 )  and then using 
equation ( 2 9 )  in equation ( 1 5 a )  to evaluate v,, we get 

Yo = POPIP,/ ( K  Tpn ) *  

p, = p,o+ pr2Ji  + O ( J 3  ( 3 0 a )  

pI2 = - ( 2 m , y o ) - ' [ P ~ ' ( a ~ o / a n ) +  m , ( p ; ' - p - ' ) -  n-'1 ( i  = 1 , 2 ) .  ( 30b)  
Equation (30b)  can be used to evaluate the Jd dependence of V T ( p 1 2 - p Z 2 ) ,  and then 
this is used in turn to calculate the O(J2)  terms in y V T ( p l - p 2 ) .  Comparison with 
terms of the same order in Jd in -Px,Vc, gives 

y 2 =  ( ~ K T ) - ' +  Y o ( p l n ,  - p l n 2 ) ( n l n 2  aPo/an)- '[-2(np2m,)- '  
+(npKT)-'  dPo/an(m; ' -  m ; ' ) ]  
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Equation (31), in conjunction with equation (15b), allows us to evaluate v 4 / v 2  and 
thus to estimate the relative importance of the O(&) terms in F. This will be done in 
8 4 for the hard-sphere model. 

Having obtained y 2 ,  we proceed to consider other coefficients of interest which 
are calculable from it. First of all, we note that the circumstance that equation (28) 
contains a term in VT means that V T ( ~ ,  - wZ) also has a term linear in the temperature 
gradient, in addition to the term linear in Vc,. Since such a term is absent from 
equation (21), it must cancel with -AT-'V T in equation (12). The condition for this 
is 

A = A o + A 2 J ~ + O ( J ~ )  (32a) 

A , =  ( y , T / n ) ( d P , / d T ) ( m I ' - m ; ' )  (326) 

A 2 =  T(aP,/aT)(aP,/an)-'{(m;' - m;')[ t (P; '  aP,/dn - n - - ' ) ( n - ' +  PO' dP,/dn + n i l )  

- $ ( - P ~ 2 ( d P o / J n ) 2 + ~ ~ '  a'PO/an2+n-*)+ y , n - ' a ~ , / a n ]  

- (Pl/Pn2P2) + ( 2 P n P l P z ) - ' ( P : -  P ? ) ( l +  nP,' aPo/an)). (32c) 

Using yo from equation (29), we can employ this result in conjunction with equation 
( s a )  to evaluate the O ( J i )  contribution to P. We have 

P =  Po(n, T ) +  P 2 J i + 0 ( J 4 , )  

p2 = -(2y0)-'( 1 + n ~ , '  aP,,/an). 
(33 a )  

(33b) 

Next, putting our result for yo into v2 = V/ yo from equation (15a), we get from equation 
(8) 

U> = V(2y0)-'(1 + Ty;' d y o / d T ) .  (34) 

With the aid of these results, we shall estimate P2/ Po and U,/ U, for the hard-sphere 
model in 0 4. 

As mentioned above, another quantity which we should like to estimate, in connec- 
tion with possible steady-state computer simulations, is D2/ Do, With such simulations 
in mind, we shall use 8 as the temperature variable rather than T. With this stipulation, 
expand 

LV-'@= (a,+ a2Jf i ) Jd+.  . . (35) 

where a, and a, depend on n , ,  nz and 8. In a previous work (Nettleton 1987a, cf 
(40a)), arguments were given, based on microscopic expressions for L obtained by 
projection operators, to the effect that 

a2 = -aovl/ v2 = -aOy1/ y o .  (36) 

Po(n, T ) = P , ( n ,  e ) - ( a ~ , / a e ) ( v , / ~ , ) ~ ~ +  . . . .  (37) 

The change of temperature variable from T to 8 modifies Po in Pxx. Thus 

The steady-state form of equation (12) now has the form of equation (2), with 

D2(8)/D0(8)  = P,'[P/(PIP21-(ap2/ae)(u2/c,)l+ Y d Y o  ( 3 8 ~ )  

Do= -Pala,. (38b) 

a,= - 1 / ~ ~ ,  where T~ is the relaxation time for Jd. This will be estimated for hard 
spheres in § 4 by calculating Do from the Enskog dense gas theory and using (38b) .  
DJ Do will also be estimated for the hard-sphere mixture. 
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Finally, we can make an  estimate of the thermal diffusion ratio, k,. As remarked 
above, however, this may not be accurate because we should treat Jd and J' on the 
same footing to examine the coupling of heat flow and  diffusion. With this reservation, 
we remark that 

V C ,  = - n - ' V n ,  - (nl /n2)Vn.  (39) 

From (28), we can express V n  in terms of V T ,  neglecting O ( J $ )  as we d o  in calculating 
k,. In this way, we obtain 

Jd = - DI2Vpl - DTT-'nm,V T 

kT = DT/DIZ = Pon,/(n' aP,/an). 

(40a 

(40b) 

Equation (40b) is evaluated for the hard-sphere model in § 4 and compared with the 
prediction of the Enskog theory. 

4. Numerical estimates for a hard-sphere isotopic mixture 

The particular system for which we shall obtain numerical values for the expressions 
derived in the preceding section is a binary isotopic hard-sphere mixture with diameters 
of both constituents chosen to be 6 = 3.64 x lo-'' m, appropriate for Ar (Hirschfelder 
et a1 1954). The two isotopes have particle masses m, and m2,  number densities n, 
and n2, and  mass densities pI = m,n, appropriate to 36Ar and 40Ar, listed in table 1. 
We shall take 8 = 87 K, close to the gas-solid transition in Ar. The equation of state, 

Po= (KTx/bo)[l+ ( X @ , ( X ) / @ 2 ( X ) ) I  ( 4 1 4  

@ ] ( x )  = 1 +0.063 507x+0.017 329x2 ( 4 1 ~  

@ 2 ( ~ ) = 1 - 0 . 5 6 1  439~+0 .081  3 1 3 ~ ~  (41c) 

x b,n = f7r6'n (41d) 

has been obtained (Ree and Hoover 1964) by fitting a Pad6 approximant to computer 
simulations. We shall take x = 1.4 and c, =0.4. If there is to be a large Jd, then c, 

Table 1. Numerical values calculated for binary hard-sphere isotopic mixture at 6 = 87 K, 
x = 1.4, with particle masses and diameters appropriate to "Ar and 4"Ar. The subscript '0' 
denotes an equilibrium function and the subscript '2' the coefficient of the square of the 
diffusion flux in the pressure f, binary diffusion coefficient D and the coefficient y of the 
driving force in ( 12). v4/u0 is the ratio of the coefficient of the third-order to that of the 
first-order tern] in the force associated with the variable Jd. 

5.97 x kg 
6.63 x kg 
5.54 x 10" m-3 
8.32 x m-3 
8.67 x lo7 Pa 

-1.82 x lo-' m3 kg-l 
1.08 x lo3 kg m-3 

-1 .86X IO-" m4s2kg- '  

-5.91 x IO-' m i  J - '  
-5.49 x lo-" mh J- '  kg- '  

3 17 x lo-" mb J - '  kg-' 
110 
2.34 x lo-' kg 6' s-'  
2.97 x s 
0.136 
0.0227 
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must vary widely across a macroscopic system, and we shall place the mixture in V 
around the middle of the concentration range, i.e. in the middle of the diffusion cell. 

Using these values of x, 6 and 0 plus m, and m2 from table 1 and C, = ~ N K  in 
equation (lo),  we estimate 

M i / (  T - e )  = 3y,n~B = 5.38 x 10" kg2 m-4 s-,. (42) 

Then ( T  - @ ) / e  is appreciable only if l J d l 3  20 X lo3 kg m-' s-l which is a very large 
diffusion flow. Similarly, if we use equation (31) to compute yz, obtaining the value 
in table 1 ,  we find IyzJi/yol b 0.01 if IJd/ 3 40 X lo3 kg m-2 s-'. From (38a) we estimate 
D2/ Do, and we find DzJi /  Do> 0.01 if / J d (  3 17 x lo3 kg m-'s-'. The same very large 
diffusion flux is therefore required for the observation of all non-linear effects we 
consider here, and so these effects, under realisable conditions, are expected to be 
negligible, The reason why the same threshold is obtained in each case is that U,/ U,, 
yr/yo and D J D ,  are all proportional to ( Y , ~ K B ) - '  = ( p / p l p , P o ) .  

Since, from equation ( 1 5 b ) ,  yz/yo= u 4 / u 2 ,  we can neglect the O(&) terms in F 
relative to those which are O ( J i ) .  A similar conclusion has been found to hold in the 
cases of a scalar structural variable (Nettleton 1987a) and of the heat flux (Nettleton 
1987b), when the latter is treated as a relaxing state variable in a manner analogous 
to the treatment of J d  in the present paper. Thus, although v4 cannot be determined 
(Nettleton 1987a) by comparing a phenomenological equation such as equation (12) 
plus equations (7b) ,  (14), (32a) and (35 )  with a derivation of an equation for j d  from 
a model, it appears that higher-order terms O ( J i )  or O ( J ' 2 )  in @ or F can be neglected 
to a good approximation. We have been able to evaluate v4 in particular cases, as we 
do  here. 

While we can evaluate D2/ Do from the results of § 3, Do itself and, from equation 
(38b),  a, are obtainable only by computer simulations. Alder er a1 (1970) have 
determined the ratio Do/& of the hard-sphere self-diffusion coefficient to the value 
obtained from the Enskog dense gas theory as a function of V / V , ,  V, being the 
close-packed volume. When x = 1.4, V /  V, = 2.12 which we use in conjunction with 
the curves of Alder et a1 (1970) to estimate D,/D, = 1.10. In turn, DE =[DOll / , y ,  
where [ D o ] ,  is the first approximation from the solution to the moderate-density 
Boltzmann equation (Chapman and Cowling 1939, p 168) and ,y the Enskog correction, 
given respectively by 

(43a) [ D,] , = 3 [8 ( 2 7~ ) ''*6*] -- I ( mom , K T /  m2 ) I' * 

,y= 1 + ( 5 7 ~ / 1 2 ) n 6 ~  (436) 

with ma=  m, + m,. In this way, we estimate DE = 0.234 x 
l.lODE =0.258 x lo-' kg m-I s-'. From equation (38b),  

kg m-' s-l and Do = 

Do/Po= 2.97 x s. (44) T,, = - a i 1  = 

This is smaller by - than the relaxation time for the heat flux calculated at x = 1.7.  
Most of the heat is probably carried by hypersound rather than by self-diffusion. From 
a rough estimate (Nettleton 1987b) that the probability per unit time that a molecule 
is free to self-diffuse is -109s-', only a very small fraction of particles can diffuse 
across the boundary in time rD. This can be advanced to justify the expression in 
equation (20) of the forces across the boundary in terms of P,,-appropriate when 
the fluid in V is contained to a good approximation by the surroundings. 
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If we use equation (40b) to calculate O(Jfi)-independent terms in the thermal 
diffusion ratio, k T ,  we obtain the value listed in table 1. For comparison, we may take 
the value kTE, calculated from the Enskog dense gas theory (Chapman and Cowling 
1939, p 293). The latter is kTE =0.0227, about one-sixth of the value from equation 
(406). We should not expect these estimates to have better than order-of-magnitude 
agreement, since kTE is obtained by applying the Enskog correction to the first 
approximation for the moderately dilute gas, and this approximation tends systemati- 
cally to be too small, as seen from the computer simulations (Alder er al 1970). Also, 
as remarked above, the accurate treatment of the coupling of heat and diffusion flows 
requires a more general ensemble, with J' as an additional state variable. Therefore, 
equation (40b) is not expected to be highly accurate. 

5. Summary and discussion 

Since marked non-linear effects have been found (Holian and Evans 1983, Hanley and 
Evans 1982) in computer simulations of Lennard-Jones liquids subjected to very high 
rates of shear, including non-analytic dependence of pressure and viscosity on shear 
rate, the question arises whether similar non-analyticities can be found in other transport 
coefficients. For example, if D2 in equation (13) were large enough so that the O ( J i )  
term in D became dominant far from equilibrium, then in the steady state D might 
depend on some power of Vc, other than the square. Alternatively, the diffusion 
coefficient might have a different constant value at high rates of flow from the value 
it assumes at low flow rates. 

To elucidate this question, we need to calculate the O ( J i )  dependence of y in 
equation (12). This is done by comparing equation (12) with a microscopic model. 
The relaxation equation for .id should be obtainable by multiplying the classical 
Liouville equation by A , ,  defined in equation ( l ) ,  and integrating over r space. It 
has been shown (Nettleton 1985) that such an equation for .id can be cast in Onsager- 
Casimir canonical form, with Jd an extended state variable and Q, = - d F / d J d  a ther- 
modynamic force. The usual reciprocity and integrability conditions obtain, even when 
the phenomenological coefficients are non-linear in Jd. The driving terms in equation 
(12), proportional to Vc, and V T, must be calculated by adding to the Liouville equation 
contributions from interaction with the surroundings. Provided the fluid in V is 
contained by the surroundings during the short relaxation time T,, required for approach 
to the steady state, the force acting across the boundary can be expressed in terms of 
the pressure, as in applications of the virial theorem to a fluid confined to a box. This 
yields the driving term -Py,Vcl in equation (21) for comparison with the term - V T ( p l -  

pz )  in equation (12), a comparison which permits us to evaluate y. 
To make this comparison and calculate y z ,  we need to evaluate the O(Ji) contribu- 

tions to p ,  and p 2 .  This is done by using the reciprocity relation (1 .5~)  to calculate 
the o(Jd) term in and the integrability condition ( 5 b ) .  y2  is used in equation (36) 
which gives the O ( J i )  dependence of L in equation (12). In equation (38a), with 
these results, we express D2/Do in terms of y2 ,  permitting an estimate of non-linear 
effects in isotropic diffusion. 

As seen from the numerical estimates for the hard-sphere model in table 1, to see 
an appreciable non-linear effect we should have to have /Jd/ b 2 x lo4 kg m-'s-', which 
would be very hard to achieve in an actual steady-state experiment. This conclusion 
is similar to one obtained earlier for heat conduction in a dense hard-sphere model 
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(Nettleton 1987b) where a flux of -IO9 W m-2 would be needed before non-linear 
effects could be seen. Such flows may be seen in shock waves, but the relevance there 
of the present analytic formalism is not established. 

The best test of our predictions would be in molecular dynamics simulations. 
Existing results (Kincaid and Erpenbeck 1986) were made for a hard-sphere mixture 
with a mass ratio 10 to 1 and at much lower density. These predict that dependence 
of D on the concentration gradient is small, but there is no reliable determination of 
the precise magnitude and functional form of this dependence. 

It should be emphasised that these conclusions regarding non-linear effects apply 
only at liquid densities and say nothing about, e.g., low-density plasmas. In the latter 
case, where heat is carried by electrons, non-linear effects in heat conduction have 
been found in solutions of the Boltzmann equation (Eu 1985a, b, c). 

Furthermore, the particular ensemble chosen in the present paper, with MI, M , ,  
V, T and Jd as state variables, appears limited in its usefulness to the neighbourhood 
of a steady state. By an application of reciprocity, we predict equation (16), which 
we might expect to hold near a steady state because of the coupling of heat and 
diffusion flows. However, in a general non-equilibrium state, J’  and J d  can relax 
independently and should both be used as state variables. In the ensemble used in 
the present treatment, the concentration and temperature may differ between system 
and surroundings, but no variables have been introduced to characterise their variation 
within the system. A theory which includes relaxation of the internal density gradient 
and couples it to components of the heat flux has been developed (Nettleton 1961) 
for the linear case in a one-component system. Introduction of V n  and V c ,  as internal 
state variables would add considerable complications not required for our present 
objective which is to estimate the order of magnitude of non-linear effects in the steady 
state. 

Since the study of non-linear effects is frequently done on computers, we have 
pointed out that T - 8 = O ( J i ) ,  where 8, the local equilibrium temperature, is a natural 
choice for the temperature variable in a computer simulation. Since ( T - 8)/ 8 is of 
the same order as other non-linear effects, the choice of T or 8 will not affect conclusions 
about the relative smallness of these effects. 
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